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Abstract LSB

The NASA Dryden Flight Research Center has an on-

going program to investigate aircraft flight characteristics

at high angles of attack. As part of this investigation, lon-

gitudinal boundary layer transition strips were installed on R
the F-18 HARV forebody, a preproduction F/A-18 radome

with a nose-slice tendency, and the X-31 aircraft forebody Red
and noseboom to reduce asymmetric yawing moments at

high angles of attack. The transition strips were effective

on the F-18 HARV at angles of attack above 60 °. On the r

preproduction F/A-18 radome at an angle of attack near
50 ° the strips were not effective. When the transition strips

were installed on the X-31 noseboom, a favorable effect

was observed on the yawing moment dynamics but the

magnitude of the yawing moments was not decreased.

Nomenclature

C n

Cn o

C no.

yawing moment coefficient

yawing moment coefficient at zero sideslip

yawing moment coefficient due to forebody
at zero sideslip

Cp pressure coefficient

Cy side-force coefficient

F.S. fuselage station

HARV High Alpha Research Vehicle

LEX leading-edge extension
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laminar separation bubble

M Mach number

MATV multi-axis thrust vectoring

radius of forebody just forward of the canopy

Reynolds number based on noseboom
diameter

nose-tip radius of curvature

aircraft angle of attack, deg

aircraft angle of sideslip, deg

0 forebody circumferential angle, deg

¢ aircraft roll angle about the body axis, deg

Introduction

Recent attention has focused on high-angle-of-attack

flight research with the F-18 High Alpha Research Vehicle
(I-IARV), X-29A, X-31, and F-16 multi-axis thrust vector-

ing (MATV) programs. One thing has become clear from

this research---the importance of the flow about the fore-

body. For example, on the X-29A, an asymmetrical fore-

body vortex system caused large yawing moments that
switched from left at ct = 45 ° to right at ct = 50°. 1-2 On the

F-18 HARV, 3 flow visualization identified an interaction

between the forebody and leading-edge extension (LEX)

vortices that resulted in wing rock at ct --- 45 °. The flight

envelope clearance for the X-314 has been slowed by large

yawing moments believed to be caused by asymmetrical

forebody vortices and has required additional wind tunnel

test: to find a solution. Other aircraft such as the F-16

have had their useful angle-of-attack range limited

because of large yawing moments caused by asymmetric

forebody vortices. 6



These yawing asymmetries may be caused by small,
sometimes imperceptible, imperfections in the side-to-side
symmetry of the aircraft forebodies. 7 Even carefully
machined forebodies and missile shapes, however, can
also have large yawing moments and side forces at high
angle of attack and zero sideslip. 8-n In addition, the yaw-
ing moments can and do change direction with varying
angle of attack as well as body rotation.

Some high-angle-of-attack design guidelines and meth-
odologies developed primarily from wind-tunnel data on

ways to reduce forebody asymmetries have been offered
by Chapman, Keener, and Malcolm 13and by Skow and
Erickson. 14 In some cases these guidelines have been
followed, with generally favorable results. In other cases

the guidelines have not been followed, with usually unfa-
vorable results.

At NASA Dryden Flight Research Center, the use of
longitudinal boundary layer transition strips to reduce
wing rock and forebody yawing asymmetries was first
investigated on the F-18 HARV. The lessons learned from
the HARV were then applied to a standard F/A-18 aircraft,
with a preproduction radome with yawing or nose-slice
tendencies, and to two X-31 aircraft, which were experi-
encing forebody yawing asymmetries during their high-
angle-of-attack envelope expansion. The use of longitudi-
nal transition strips is also being investigated in the wind
tunnel to improve results at high angle of attack. With lon-
gitudinal transition strips on a wind-tunnel 6-percent scale
model of an F-18, pressures measured on the forebody
showed much better correlation with identical pressures
obtained in flight on an F-18 aircraft than those obtained
using the conventional gritting techniques. Is Hall and
Banks _6also report on the use of twin grit strips, 54° from
the windward plane of symmetry, on a 3.5 ogive cylinder
to improve the correlation of pressure and moment data
over a wide range of Reynolds numbers.

angle-of-attack range, at tx -- 45°, the F-18 HARV experi-
enced an uncontrollable wing rock motion that can cause
the aircraft to roll more than +20 ° (fig. 2). Wing rock is the
uncommanded, large amplitude, lightly damped rolling
motion exhibited by many aircraft and wind-tunnel mod-
els. 1s-2°It can take on several different forms, but for the

F-18 HARV, wing rock is a random slow rolling and side-
slip excursion limit cycle with a period of about 6 sec.
F-18 HARV wing rock also coincides with the severe
interaction of the forebody and LEX vortices as shown by
smoke flow visualization)

During a site visit, Professor Dennis Mabey* suggested

that longitudinal boundary layer transition strips, applied
80° from the bottom centerline starting at the radome apex

and extending aft (fig. 3), might reduce or eliminate the
undesired wing-rock motion. This placement of the transi-
tion strips puts them below or windward of the laminar
separation bubble (fig. 1). The purpose of the strips was to
transition the boundary layer from laminar to turbulent
flow, causing more stable and symmetric boundary layer
separation locations on the forebody, and hence, the cre-
ation of a symmetric vortex system. While the wing-rock
problem was still significant with the transition strips at
ct = 45 ° (fig. 4), the transition strips had a positive effect,
which will be described later in the Results section.

The F-18 HARV (fig. 5) is a modified full-scale devel-
opment, twin-engine, single-place, fighter/attack F/A-18
aircraft, z_The aircraft was modified by adding externally
mounted thrust vanes for the deflection of the exhaust to

provide additional pitching and yawing control moments.
The F-18 HARV used a metal flight test radome of approx-
imately the same dimensions as the production radomes.
The apex of the radome was modified by the removal of
the flight test noseboom and the installation of a flush air
data system3 a The radome nose radius was approximately
1.1 in.

This paper presents recent results obtained using twin
longitudinal boundary layer transition strips. The transi-
tion strips were placed on the lower surface of these air-
craft forebodies to reduce the yawing moments resulting
from asymmetric forebody flows at high angles of attack,
Results are presented in the form of pressure distributions,
pilot comments, or aircraft yawing moments.

F-18 High Alpha Research Vehicle

Extensive surface and off-surface flow visualizations

were performed on the F-18 HARV during flight testing in
1988 and 1989. 3,17At high angles of attack, surface flow
visualizations using the emitted-dye technique revealed

large areas of laminar flow on the forebody and the
existence of laminar separation bubbles. As shown in fig-

ure 1, at u ---47 ° the laminar separation bubble extended
back as far as 42 in. from the nose apex. For the same

Experiment Description

Extensive (250) pressure measurements were made at
five circumferential rings on the forebody of the F-18
HARV (fig. 6). Each orifice was connected to temperature-

controlled electronic scanning pressure modules with a
differential range of+_216 lb/ft2. Reference pressure for the
modules was supplied by a tank in the forebody, vented to
the radome compartment, and monitored by a high-
resolution absolute pressure transducer. In-flight zero dif-
ferential pressure readings were taken before each test
point and were used during postflight data reduction to
correct the data for calibration offsets. Accuracy for the
forebody pressure measurements is estimated to be _+1lb/
ft2. Reference 23 has a more complete description of the

"Visiting Professor, Dept. of Aeronautics, Imperial College, London, and

formerly with the Royal Aircraft Establishment, Bedford, England.



orifice locations, some local protuberances, and the pres-

sure instrumentation system.

Data were obtained with and without longitudinal

boundary layer transition strips. The twin longitudinal

boundary layer transition grit strips, earlier shown in fig-

ure 3, were applied at _+80° from the windward plane of

symmetry and extended from 1 in. past the nose apex aft

127 in. to below the LEX apex. The transition strips con-

sisted of #36 Carborundum TM (Carborundum Abrasives

Co., Niagara Falls, NY 14304) grit and were approxi-

mately 1/8-in. wide. Later, a single boundary layer transi-

tion strip was also tested on the port side that was

approximately 65 ° to 70 ° from the windward plane of

symmetry. Reference 24 was used as a guide in selecting

the grit size for this experiment.

Data were obtained at quasi-stabilized 1-g flight condi-
tions at nominal altitudes of 20,000 and 34,000 ft. At the

high angles of attack, constant altitude could not be main-

tained during the 1-g maneuvers and, therefore, data were

obtained in a descent. Time segments of 0.4-sec duration

were used for data analysis purposes, with approximately

10 time points averaged.

Results

Figure 7 presents forebody pressure distributions for the

five forebody stations at ¢t _ 70 ° in the clean configura-

tion and with the symmetric boundary layer transition

strips. In figure 7(a), the clean configuration, asymmetries

in the pressure distributions are especially evident at

ES. 142. The higher suction pressures on the starboard
side of the forebody result in a yawing moment to star-

board (pilot's right). With the symmetric boundary layer

transition strips (fig. 7(b)), the pressure distributions for

all five locations are very symmetric, and the footprints of

the forebody vortex pair have become more pronounced at
F.S.'s 70 and 85.

Figure 8 shows the effect of a single transition strip on

the port (pilot's left) side of the forebody. The effect of

differing boundary layer conditions is seen on the two

opposite sides of the forebody such as could occur during

the radome service life due to damage such as scratches,
dings, or even a low-quality paint job. In figure 8(a)0 at

ct = 67 °, the pressure distributions appear similar to the

clean configuration at cx _ 70 ° with high suction pressures

on the starboard side. At ct = 70 ° (fig. 809)), however, the

asymmetry has rapidly switched so that the higher suction

pressures are on the port (pilot's left) side.

that for the clean configuration. With the asymmetric tran-

sition strip, the asymmetries became significant starting at

ct = 48 °. The asymmetrical transition strip also caused the

forebody yawing moment to switch signs with only a

small change in angle of attack. This rapid switching from

a right to a left yawing moment would be of concern to

pilots.

F/A-18 Aircraft

The F/A-18 (SN-161520) (fig. 10) is a standard single-

place production aircraft used for pilot proficiency and

safety chase at NASA Dryden. The aircraft carried no

stores or missiles during these tests. This F/A-18 was

chosen for the experiment because, up to cx -- 54 ° in its

standard configuration, the aircraft exhibited very little

yawing or nose slice tendencies. (An angle of attack of 54 °
corresponds with full-aft stick in 1-g flight.) Any yawing

tendency was easily controlled with the rudders.
i

The F/A-18 carried no research instrumentation system

on board, and only pilot comments and notes were

recorded during postflight debriefings. Airspeed and angle

of attack were computed by the production airdata com-

puter and displayed to the pilot on the heads-up display.

Above 33 °, the airdata computer used the inertial naviga-

tion system to compute angle of attack.

Experiment Description

For this experiment, the radome of the aircraft was

replaced with a preproduction radome from another

F/A-18 (SN-161216) that was known to have a nose yaw-

ing tendency at ct --- 50 °. The apex of the preproduction

radome, as well as the production radomes, had a metal

rain erosion cap with a 1.8-in. diameter that protruded
-0.060 in. with a radius of curvature of -1.2 in. This

preproduction radome was flight tested with and without

twin boundary layer transition strips. The boundary layer

transition strips of #36 Carborundum were approximately

1/8-in. wide and were located on each side of the radome

approximately 65 ° to 70 ° up from the windward plane of
symmetry and below the location of the laminar separation
bubble as seen on the F-18 HARV.

The flight test conditions flown on the F/A-18 consisted

primarily of two maneuvers: a l-g deceleration to full-aft

stick starting at 225 KCAS and a 90°-banked turn with a

smooth aft stick sweep starting at 240 KCAS. These two

maneuvers were performed first at 40,000 ft and then at
20,000 ft.

The pressures on the forebody were integrated for the

clean configuration and with the boundary layer transition

strips to obtain forebody yawing moments (fig. 9). The

asymmetries did not become significant until c_ ---60 ° for

the clean configuration. The symmetric transition strips

reduced the forebody yawing moment to one-fourth of

Results

During the checkout flight of the F/A-18 with its origi-

nal production radome, the aircraft had a slight tendency

to yaw at c_ = 55 ° but was easily controlled with the rud-

der. With the preproduction radome installed, during the



1-g stalls at 40,000-ft altitude, the aircraft yawed to the
right at a _- 50° to 55° and was not controllable with the
rudder. The pilots commented that there was increased
wind noise about the canopy, possibly caused by vortex
activity, and that the aircraft was much more susceptible to

wing rock. (The table shows the pilots' comments for each
maneuver flown.) At an altitude of 20,000 ft and ot ,- 50°
to 55°, the aircraft would yaw to the left, again not con-
trollable with the rudder. During the left 90°-banked turns,
the aircraft tended to roll out of the turn, that is, toward

wings level, but did not tend to yaw or nose slice.

With the boundary layer transition strips added to the

preproduction radome, the aircraft yawed to the left at alti-
tudes of 20,000 and 40,000 ft and _t ---50° to 55° for the
first pilot. During the 90° left- and fight-banked turns, the
aircraft rolled toward wings level then yawed to the left.
Between flights, it was noted that there were some rough

spots from paint particles on the metal rain erosion cap at
the radome apex. The metal cap then was scraped clean of
paint and the burrs removed. The second pilot then flew
the aircraft and observed a left yaw during the 1-g maneu-
ver at 40,000-ft altitude, as was observed by the first pilot.
The same maneuver at an altitude of 20,000 ft was gener-
ally symmetric but with what the pilots called "lurches."
The left 90°-bank tams at both altitudes for the second

pilot tended to roll to wings level but did not yaw; the
right 90°-bank turns were generally symmetric.

After the flights, both pilots said they felt that the
boundary transition strips did not improve the high-angle-
of-attack flying qualities of the aircraft with preproduction
radome installed. In conversation with McDonnell Dou-

glas engineers, they related to the authors their experience
that if the radome is more than 0.015 in. (_+0.0075 in.) out
of round in the first few inches, the aircraft may have a

yaw or nose-slice tendency at a _ 50° or higher. At their
plant, radomes that were as much as 0,050 in. out of round
were reworked, and then no longer exhibited the yawing
tendency. Radomes manufactured using a new process
that greatly reduced manufacturing asymmetries have not
exhibited yawing tendencies.

After the flight tests, the preproduction radome was
measured for symmetry and mounted on a compound
angle plate and rotated about its longitudinal axis, The
basic F/A-18 radome is circular in cross-section with a

5.637 ° nose depression or droop angle. Readings were
taken circumferentially every 10° with a dial gauge at
intervals of 1 to 2 in. for the first 10 in., then every 5 in. for
the next 15 in. The results of these measurement showed
that the first 15 in. of the radome was circular within

_+0.011 in., just slightly outside the criteria used by
McDonnell Douglas. The centerline of radome at the for-
ward measurement stations did appear to be slightly offset
to the fight about 0.025 in. At the tip, the rain erosion
washer appeared to be offset to the right about 0.1 in.,
which was not unusual even for production radomes.

Pilots' comments regarding F/A-18 maneuvers flown.

Clean With transi-
Maneuver Pilot (without strips) tion strips

1-g deceleration 1 Yaw fight Yaw left
at 40,000 ft

2 Yaw left Yaw left

90° left bank turn 1 Roll out to 45 ° Roll right to
at 40,000 ft bank 45°, yaw

left

2 Roll out to 60° Right roll

90° right bank 1 No slice
turn at 40,000
ft

2 OK

1-g deceleration 1 Yaw left Yaw left
at 20,000 ft

2 Yaw left Generally
symmet-
ric with
lurches

90 ° left bank turn 1 Yaw fight Roll right to
at 20,000 ft 45 °, yaw

left
2 Yaw right to OK

wings level

90° right bank 1 Roll left,
turn at 20,000 yaw left
ft

2 OK

X-31 Aircraft

As mentioned in the Introduction section, the flight
envelope clearance for the X-31 aircrafd had been slowed
by large yawing moments believed to be caused by asym-
metrical forebody vortices. With the success of the bound-

ary layer transition strips in reducing the forebody yawing
moments on the F-18 HARV, the project decided to try
them on the X-31 aircraft.

Two X-31 research aircraft were built and have been

designated ships 1 and 2. The X-31 (fig. 11) featured a
single-engine, single-place cockpit and a delta wing. For
control each aircraft had a small, forward-mounted canard;

single vertical tail with conventional rudder; wing leading
flaps; trailing edge flaps-elevons; and three carbon-carbon
paddles for vectoring the jet exhaust. Each aircraft was
43.3 ft long, had a wingspan of 23.8 ft, weighed 12,000 lb
empty, and held 4,100 lb of fuel in a single fuselage fuel
tank.

Each aircraft had a flight test noseboom that protruded
from beneath the forebody and extended 125 in. forward

4



to66.5in.fromthenosetip.The diameter of the noseboom

was 3.5 in. The flight noseboom configuration, though
somewhat unusual, was selected as the best configuration
from several tested in subscale wind-tunnel tests because

it was felt to pose the least potential dynamic problems at
high angles of attack. 25 Large dynamic sting loads were
observed with an oscilloscope during these tests of the
noseboom configurations; however, large steady-state
asymmetric yawing moments were not noted during these
wind-tunnel tests.

During the initial flight testing, the X-31 forebody nose
radius was extremely sharp, -1/16 in. During the flight
program, a 20-in. strake configuration was added, and the
noses were rounded to 0.75 and 0.5 in. for ships 1 and 2,

respectively. 2_The larger nose radii are more representa-
tive of the wind-tunnel model, both with and without the
nose strakes.

Both X-31 aircraft were equipped with extensive instru-
mentation systems including airdata, flow angle sensors,
accelerometers, rate gyros, control surface position trans-
ducers, inertial navigation unit information, and numerous
control system parameters. The most important parame-
ters used in the analysis were obtained at 50 samples/sec
with a 12-bit pulse code modulation data system. No fore-
body pressure data were obtained.

Experiment Description

During the envelope expansion flights of the X-31, the
pilots reported numerous side-force kicks, which they
referred to as "lurches," and other yawing asymmetries
above 50° angle of attack, especially on ship 2. At this
point, the aircraft were carefully weighed and inspected
and no asymmetries or differences between the two air-
craft stood out. In an attempt to eliminate or at least to
minimize the yawing moment asymmetries on the two
X-31 aircraft, longitudinal boundary layer transition strips
were applied to the forebodies and nosebooms (fig. 12).
The transition strips on the X-31 were wider than those
used on the F-18 HARV--3/8 in. on the forebody and
1/4 in. on the noseboom---to make them more durable and

require fewer touch ups between flights. The #30 Carbo-
rundum grit strip started at the nose tip and ran back about
56 in., stopping below the canard leading edge.

Since the noseboom was mounted under the forward

portion of the forebody, at high angle of attack the nose-
boom wake entered the forebody flowfield. A concern
over the wake of this noseboom affecting the forebody
vortex development led to the installation of another
transition-strip pair along the noseboom sides about 80°
up from the windward plane of symmetry. The goal of
using these transition strips was to cause a turbulent sepa-
ration from the cylindrical boom, thereby minimizing the
noseboom wake.

Later in the flight test program, 20-in. long strakes were
added to the most forward portion of the X-31 forebody.
This configuration was also flown with and without transi-

tion strips starting from the aft end of the strake.

An analysis of the effectofthe boundary layer transition

strips was accomplished by estimating the yawing moment
asymmetry from the flight data. Figure 13 gives a block
diagram of this method. The flight measured data are sub-
stituted into the rigid body yawing moment equation to
calculate a time history of the total yawing moment on the
aircraft during a maneuver. The same data are also run
through the X-31 aerodynamic and thrust simulation data-
bases to get a time history of the predicted yawing
moment. The difference between the calculated and pre-

dicted yawing moment time histories gives the missing or

unmodeled yawing moment, ACn . By restricting the anal-

ysis to symmetrical maneuvers in which sideslip, roll rate,
and yaw rate are small, the unmodeled yawing moment

can be attributed to asymmetries on the aircraft; C% ,-

ACn. Plotting yawing moment asymmetry from multiple
maneuvers of the same configuration against the angle of
attack resulted in a fingerprint of the asymmetry character-
istic of the configuration, which then could be compared
with other modified configurations.

Flight data were analyzed for symmetrical l-g decelera-

tions to high-angle-of-attack conditions and in elevated-g,
split-S maneuvers. The elevated-g maneuvers were very
repeatable since the control system limited the angle-of-
attack rate to 25°/sec during each maneuver. The maneu-
vers each started from nominal altitudes of 13,000, 20,000,

and 30,000 ft. The target angles of attack for the
elevated-g maneuvers were 40°, 50% 60°, and 70°.

Results

The l-g, high-angle-of-attack envelope expansion above

(x -- 50° was initiated on X-31 ship 2. As stated earlier, the

pilots had reported deficiencies in flying qualities at high
angles of attack, as a result of yawing moment asymme-
tries. Figure 14(a) shows the yawing moment for the clean

forebody configuration as a function of angle of attack, for
five different l-g decelerations. As can be seen, the clean
forebody produces an asymmetric yawing moment that is
very random, although the magnitude of the asymmetry

appears to be bounded at C% < 0.080. The introduction

of the forebody and noseboom boundary layer transition
strips results in a more repeatable asymmetry with angle of
attack (fig. 14('o)). A band of yawing moment asymmetries
exists for this configuration as shown. Although the asym-
metry is more predictable with the transition strip than
without it, the magnitude of the maximum asymmetry

actually increases to almost Cn0 = 0.100. The initial

asymmetry is to the right, reaching a peak of C% = 0.050



at48° < ct < 54°. As the angle of attack increases, the

asymmetry switches to the left, eventually reaching its

maximum asymmetry near ct = 67°. Although the magni-

tude of the asymmetry is larger with the transition snip
than without it, the pilot comments were generally favor-
able for the grit snip. This was primarily a result of the
reduction in the random behavior of the aircraft with the

transition strip in place. With this configuration, the X-31
successfully completed its 1-g flight envelope expansion
to ct = 70°,

In further tests on X-31 ship 2, the transition snips on
the noseboom were removed to evaluate the forebody
transition strips only. Figure 14(b) shows the results from
the 1-g tests plotted along with the data from tests with the
noseboom snips on. Two different asymmetry patterns
appear based on Reynolds number. Data obtained at Rey-

nolds number conditions of > 3.5x lOs have an asymmetry

onset at ct = 46 °, a peak asymmetry of C% = -0.070 at ct

= 59°, and a small asymmetry again at ct = 70°. The data

obtained at Reynolds numbers < 2.3x l0 s during decelera-

tions with forebody grit have significantly worse charac-
teristics. The initial asymmetry starts at ct = 38° and

increases to a level of C% = -0.077 at tx = 52°. The asym-

metry then rapidly changes signs, increasing to a value of

C = 0.088 by ct = 55°. Thus, the total yawing moment
Pl o

change AC,, over a 3° angle of attack is 0.165. This was

quickly rated as unacceptable by the test pilot.

As a result the boundary layer transition strip was rein-
stalled on the noseboom. These Reynolds numbers coin-
cide very closely with the critical Reynolds numbers for

cylinders in cross-flow. The lower Reynolds-number value
is very near the upper bound for laminar flow about a cyl-
inder, 2x los, while the higher Reynolds number value is
very near the lower bound for turbulent flow, 4x l0 s. The
noseboom transition strip caused turbulent boundary layer
separation and reduced the sudden changes in yawing
moment.

The l-g evaluation of the yawing moment asymmetries
on the X-31 ship 1 found that much lower levels of asym-
metry were present than on ship 2. Figure 15 shows the
asymmetry fingerprint for the clean and transition-snip-
installed configurations. The clean forebody configuration
has a repeatable asymmetry that initiates at ct = 48° and

builds to a peak of C = -0.063 at about ct -- 57°. This is
n 0

unlike ship 2, which did not have a repeatable pattern with
this configuration. The asymmetry diminished signifi-
cantly by 65° angle of attack. The installation of the
noseboom and forebody boundary layer transition strips

increased the maximum asymmetry found to C% =
-0.078.

As the elevated-g portion of the envelope expansion

began, a departure on X-31 ship 2 from controlled flight
occurred during a 2-g split-S maneuver to ct = 600. 27Data

analysis showed that the departure was triggered by a large
unmodeled yawing moment. Using the asymmetry calcu-
lation technique, the missing yawing moment increment
was calculated and is shown in figure 16. A peak yawing

moment value of AC,, = 0.125 is shown, although the
departure initiates before the peak value is reached. The
departure made it clear that the boundary layer transition
snips were not sufficient to complete the elevated-g, high-
angle-of-attack envelope clearance.

The X-31 project was forced to try more intrusive con-
figuration changes to control the forebody yawing moment
asymmetries. A wind-tunnel test of several strake configu-
rations was completed in the NASA Langley Research
Center's 30-by-60-ft wind tunnel. 5 The large amplitude
asymmetry measured in flight was not predicted in the
wind-tunnel test; however, some asymmetry was found
over the same angle-of-attack range. A 0.6-in. wide by
20-in. long (full-scale dimensions) strake reduced the
asymmetry on the model. This strake design was manufac-
tured and installed on both X-31 aircraft. The aircraft nose

apex was also rounded to more nearly match the wind-
tunnel model (r = 0.75 in., r/R = 0.039 on ship 1 and r =
0.5 in., r/R = 0.026 on ship 2). While the noseboom some-
what complicates the flow, the initial X-31 nose radius, as
shown in figure 17 (modified from ref. 14), would be
expected to be prone to forebody asymmetries and might
be improved with further blunting. Also shown in figure
17 are the nose radius ratios for the F-18 HARV and

F/A-18 aircraft. Both of these configurations have accept-
able nose radii if the merits of reference 14 are apphed.
Flight tests of the X-31 aircraft confirmed that the present
modifications did reduce the asymmetry somewhat; how-
ever, a significant amount remained. 26

A second attempt to minimize the yawing asymmetry
was made by adding a transition strip starting from the aft
end of the strake, trailing back to the same termination
point as the previous transition strip. Once again the

boundary layer transition strip was found to increase the
maximum yawing moment asymmetry. Figure 18 shows a
comparison of strake installed on ship 1 with and without
the forebody transition strip. In addition to increasing the
asymmetry level, the transition strip causes the maximum
asymmetry to be present over a larger angle-of-attack
range. The forebody transition strips also increase the
maximum asymmetry on ship 2, as shown in figure 19.



Concluding Remarks

The cause and cure of forebody asymmetries on aircraft

flying at high angle of attack (or) can be very elusive.

Symmetric longitudinal boundary layer transition strips

were used on several aircraft configurations in an attempt

to reduce asymmetric yawing moments at high angle of
attack, with limited success. Some of the results obtained
are as follows:

On the F-18 High Alpha Research Vehicle at ct > 60 ° the

boundary layer transition strips reduced the forebody yaw-

ing asymmetry; at ct -- 70 ° the yawing moment with the

transition strips was a quarter of that for the clean configu-

ration. An asymmetric transition strip on the F-18 HARV

caused a rapid switching of the forebody yawing moments

at high angle of attack.

Boundary layer transition strips did not appear to reduce

significantly the yawing moment at a ---50 ° resulting from

an asymmetric preproduction F/A-18 radome.

On the X-31 aircraft, symmetric boundary layer transi-

tion strips on the noseboom reduced the randomness of the

forebody yawing moment asymmetries at high angle of

attack. The boundary layer transition strips on the X-31

forebody did not reduce the maximum yawing moment

asymmetry of the X-31 configuration.
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Figure 1. Nose cone of F-18 HARV, ct = 47 °.
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Figure 2. Time history of wing rock on F-18 HARV at ct = 45 °.

Figure 3. Boundary layer transition slrip on F-18 HARV forebody.
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Figure 4. Time history of wing rock with transition strips installed.

Figure 5. F-18 HARV in flight.
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Figure11.X-31aircraftin flight.
EC93-41063-10

Figure12.BoundarylayertransitionstripsonX-31forebodyandnoseboom.
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Figure 15. X-31 ship-1 asymmetry characteristics with and without transition strips.

17



deg

80

70 m

60- Y

50 -

40 -

30-

2o l I I I I 1 I I
-.04 -.02 0 .02 .04 .06 .08 .10 .12 .14 .16

Cno 940113

Figure 16. X-31 ship-2 yawing moment asymmetry from flight 73 departure.

3.0 --

2.5

2.0

ICyI 1.5

1.0

.5

"" O-

X-31 (original)

t/_ fX-31 ship 2 (modified)

f X-31 ship I (modified)-F.18 HARV
\ / F/A-18

- _ /--
\

b
%

- ,_

%,

I

.05

O:= 50*
M = 0.25

Rd = 0.8 x 106

13=0°
3.5 pointed

tangent ogive
B

,p

f

.... I I I
0 .10 .15 .20

r/R 94Ol14

Figure 17. Effect of nose bluntness on side force (modified from fig. 71 in ref. 14).

18



80-

deg

70

6O

5O

40-

30-

20 1 I I 1
-.10 -.08 -.06 -.04 -.02

--o-- Strake, forebody, and

noseboom strip

.-o--- Strake and transition
strip

I I I I I
0 .02 .04 .06 .08 .10

Cno 940115

Figure 18. X-31 ship-1 forebody asymmetry characteristics with forebody strakes.

80

70

60

(x, 50
deg

40

30

--o-- Strake, forebody and
noseboom strip

--a-- Strake and noseboom
transition strip

I

20 I I I 1 I I I I
-.10-.08 -.06 -.04 -.02 0 .02 .04 .06 .08 .10

Cno _o116

Figure 19. X-31 ship-2 forebody asymmetry characteristics with forebody stlakes.

19



REPORT DOCUMENTATION PAGE Approve 
OMB No, 0704-0188

, , , ,._ Tr

Public reporting burden for this cofleclion of Information is estlrnatsd to average 1 hour I_er raspo_le, Including the tlme fOr rev|ewing instructions, searching existing data souroes,

gathering and maintaining the data needed, and comple(tng and reviewing the colisctlon of information. Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions lor reducing this burden, to Washington Headquarler$ Services. Directorate for Information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204. Arlington. VA 22202-4302. andto the Office of Managetnent and Budget, Paperwork Reductlon Pro_ect (0704-0188). Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

July,1994 .......
4. TITLE AND SUBTITLE

Controlling Forebody Asymmetries in Flight--Experience With Boundary

Layer Transition Strips

3. REPORT TYPE AND DATES COVERED

Technical Memorandum

6. AUTHOR(S)

David F. Fisher (NASA Dryden Flight Research Center, Edwards,

California) and Blent R. Cobleigh (PRC Inc., Edwards, California)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Dryden Flight Research Center
P.O. Box 273

Edwards, California 93523-0273

9. SPONNSORING/MONOTORING AGENCY NAME(S) AND ADDR'ESS(E'S)

National Aeronautics and Space Administration

Washington, DC 20546-0001

5. FUNDING NUMBERS

WU 505-68-71

8. PERFORMING ORGANIZATION

REPORT NUMBER

H-1992

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA TM-4595

11.SUPPLEMENTARYNOTES

This was originally prepared as AIAA-94-1826 for the 6th Biennial Flight Test Conference, Colorado Springs,
CO, June 20-23, 1994.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassi fled---Unlimited

Subject Category 02

.,b.DISTR,BU'r;0.CODE

13. ABSTRACT (Maximum 200 words)

The NASA Dryden Flight Research Center has an ongoing program to investigate aircraft flight characteris-
tics at high angles of attack. As part of this investigation, longitudinal boundary layer transition strips were

installed on the F- 18 HARV forebody, a preproduction F/A- 18 radome with a nose-slice tendency, and the X-31

aircraft forebody and noseboom to reduce asymmetric yawing moments at high angles of attack. The transition

strips were effective on the F-18 HARV at angles of attack above 60 °. On the preproduction F/A-18 radome at
an angle of attack near 50 ° the strips were not effective. When the transition strips were installed on the X-31

noseboom, a favorable effect was observed on the yawing moment dynamics but the magnitude of the yawing
moments was not decreased.

14.

17.

SUBJECT TERMS

Boundary layer separation; Boundary layer transition; F- 18 aircraft; Hight tests;

Forebodies; Pressure distribution; Vortices; X-31 aircraft; Yawing moments

SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECU RITY CLASSIFICATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

23

16. PRICE CODE

AO3

20.LIMITATIONOFABSTRACT

Unlimited

NSN 7540-0t-280-5500 Available trom the NASA Center for AeroSpace Information, 800 Elk[idge Landing Road, Standard Form 298 (Rev. 2-89)
Pr _ctiiaed by ANSI Sld. Z3_-18

Linthicum Heights, MO 21090; (301)621-0390 2as.lo2


